ZEROES OF POLYNOMIALS

Gadadhar Misra

Department of Mathematics, Indian Institute of Science

ZEROES OF POLYNOMIALS

The Permanent

נוווטווווונט.

 $\text{per}(A) = \; \sum \; \prod^n A[i,\sigma(i)]$ $\sigma \in S_n$ i=1

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\text{per}(A) = \sum_{}^{} \prod_{}^{} A[i, \sigma(i)]$ $\sigma \in S_n i=1$

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\text{per}(A) = \sum_{i=1}^{n} A[i, \sigma(i)]$ $\sigma \in S_n i=1$

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\text{per}(A) = \; \sum \; \prod^n A[i,\sigma(i)]$ $\sigma \in S_n i = 1$

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A[i, \sigma(i)]$$

$$M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$$

$$\sigma_1 = 1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3$$

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A[i, \sigma(i)]$$

$$M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$$

$$\sigma_2 = 1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 2$$

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A[i, \sigma(i)]$$

$$M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$$

$$\sigma_2=1\rightarrow 1, 2\rightarrow 3, 3\rightarrow 2$$

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A[i, \sigma(i)]$$

$$M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$$

$$\sigma_2 = 1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 2$$

$$aqz + ary$$

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A[i, \sigma(i)]$$

$$M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$$

$$\sigma_3 = 1 \rightarrow 2, 2 \rightarrow 1, 3 \rightarrow 3$$

aqz + ary

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A[i, \sigma(i)]$$

$$M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$$

$$\sigma_3=1\rightarrow 2, 2\rightarrow 1, 3\rightarrow 3$$

aqz + ary

aqz + ary + bpz

 $per(A) = \sum_{i} \prod_{j=1}^{n} A[i, \sigma(i)]$ $\sigma \in S_n i = 1$

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A[i, \sigma(i)]$$

$$M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$$

 $\sigma_4 = 1 \to 3, 2 \to 2, 3 \to 1$

aqz + ary + bpz

$$M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$$

 $per(A) = \sum_{i} \prod_{j=1}^{n} A[i, \sigma(i)]$

$$aqz + ary + bpz$$

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\sigma_4 = 1 \rightarrow 3, 2 \rightarrow 2, 3 \rightarrow 1$

aqz + ary + bpz + cqx

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\sigma_5 = 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1$

aqz + ary + bpz + cqx

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\sigma_5 = 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1$

aqz + ary + bpz + cqx

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\sigma_5 = 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1$

aqz + ary + bpz + cqx + brx

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\sigma_6 = 1 \rightarrow 3, 2 \rightarrow 1, 3 \rightarrow 2$

aqz + ary + bpz + cqx + brx

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\sigma_6 = 1 \rightarrow 3, 2 \rightarrow 1, 3 \rightarrow 2$

aqz + ary + bpz + cqx + brx

 $M = \begin{pmatrix} a & b & c \\ p & q & r \\ x & y & z \end{pmatrix}$

 $\sigma_6 = 1 \rightarrow 3, 2 \rightarrow 1, 3 \rightarrow 2$

aqz + ary + bpz + cqx + brx + cpy

why permanent?

Let us consider the probléme des ménages: At a round table $\mathfrak n$ couples are to be seated. The $\mathfrak n$ wives have already occupied the seats $1,3,\ldots,2\mathfrak n-1$. No husband is allowed to seat next to his wife. In how many ways, the men can be seated?

Count the number of permutations σ of n symbols such that neither $\sigma(i)=i$ nor $\sigma(i+i)=i$ modulo n.

the permanent again!

This is the permanent of the matrix $\mathbf{J} - \mathbf{I} - \mathbf{I}'$, where \mathbf{J} is the all 1 matrix,

I is the identity matrix and

I' is the matrix with 1 at (i, i + 1) position and (n, 1)This matrix is of the form

$$\begin{pmatrix} 0 & 0 & 1 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 1 & \cdots & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$$

$$M = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$$

$$M = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$$

$$M = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$$

$$M = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$$

$$M = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$$

$$M = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$$

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

What is the permanent of this matrix?

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

 $\left(\frac{n!}{n^n}\right)$

What is the permanent of this matrix?

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

What is the permanent of this matrix?

$$\left(\frac{\mathfrak{n}!}{\mathfrak{n}^{\mathfrak{n}}}\right)$$

van der Waerden's Conjecture

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

What is the permanent of this matrix?

$$\left(\frac{n!}{n^n}\right)$$

van der Waerden's Conjecture

$$per(A) \geqslant \left(\frac{n!}{n^n}\right)$$
, for any doubly stochastic matrix A .

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

 $n! \cdot \left(\frac{1}{n}\right)^n$

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

 $n! \cdot \left(\frac{1}{n}\right)^n > \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(\frac{1}{n}\right)^n$

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

 $n! \cdot \left(\frac{1}{n}\right)^n > \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(\frac{1}{n}\right)^n$

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

 $n! \cdot \left(\frac{1}{n}\right)^n > \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(\frac{1}{n}\right)^n = \sqrt{2\pi n} \cdot \left(\frac{1}{e}\right)^n$

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

 $n! \cdot \left(\frac{1}{n}\right)^n > \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(\frac{1}{n}\right)^n = \sqrt{2\pi n} \cdot \left(\frac{1}{e}\right)^n$

GOAL.

$$M = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \cdots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

$$n! \cdot \left(\frac{1}{n}\right)^n > \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(\frac{1}{n}\right)^n = \sqrt{2\pi n} \cdot \left(\frac{1}{e}\right)^n$$

GOAL.

$$per(A) \geqslant \left(\frac{1}{e}\right)^n$$
, for any doubly stochastic matrix A.

Consider: $f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n \alpha_{ij}z_j$

Consider:
$$f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n a_{ij}z_j$$

$$(a_{11}z_1 + a_{12}z_2 + \cdots + a_{1n}z_n)$$
.

 $(a_{21}z_1 + a_{22}z_2 + \cdots + a_{2n}z_n)$.

 $(a_{n1}z_1 + a_{n2}z_2 + \cdots + a_{nn}z_n).$

Consider:
$$f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n a_{ij}z_j$$

$$(a_{11}z_1 + a_{12}z_2 + \cdots + a_{1n}z_n)$$

 $(a_{21}z_1 + a_{22}z_2 + \cdots + a_{2n}z_n)$.

 $(a_{n1}z_1 + a_{n2}z_2 + \cdots + a_{nn}z_n)$.

Consider the coefficient of
$$z_1z_2\cdots z_n$$
 in this product.

Consider:
$$f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n a_{ij}z_j$$

 $(a_{11}z_1 + a_{12}z_2 + \cdots + a_{1n}z_n)$.

$$(a_{21}z_1 + a_{22}z_2 + \cdots + a_{2n}z_n)$$

$$(a_{n1}z_1 + a_{n2}z_2 + \cdots + a_{nn}z_n).$$

Consider the coefficient of $z_1z_2\cdots z_n$ in this product.

$$\sum a_{1\star}a_{2\star}\cdots a_{n\star}$$

Consider:
$$f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n a_{ij}z_j$$

 $(a_{11}z_1 + a_{12}z_2 + \cdots + a_{1n}z_n)$.

$$(a_{21}z_1 + a_{22}z_2 + \cdots + a_{2n}z_n)$$
.
 \cdots
 $(a_{n1}z_1 + a_{n2}z_2 + \cdots + a_{nn}z_n)$.

Consider the coefficient of $z_1 z_2 \cdots z_n$ in this product.

$$\sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}$$

Consider:
$$f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n a_{ij}z_j$$

$$(a_{11}z_1 + a_{12}z_2 + \dots + a_{1n}z_n).$$

$$(a_{21}z_1 + a_{22}z_2 + \dots + a_{2n}z_n).$$

$$\dots$$

$$(a_{n1}z_1 + a_{n2}z_2 + \dots + a_{nn}z_n).$$

Consider the coefficient of $z_1z_2\cdots z_n$ in this product.

per(A).

Consider:
$$f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n a_{ij}z_j$$

$$(a_{11}z_1 + a_{12}z_2 + \cdots + a_{1n}z_n)$$

 $(a_{21}z_1 + a_{22}z_2 + \cdots + a_{2n}z_n)$

$$(a_{n1}z_1 + a_{n2}z_2 + \cdots + a_{nn}z_n)\cdot$$

Consider the coefficient of $z_1z_2\cdots z_n$ in this product.

$$\partial^{(1,\dots,n)} f_A = \operatorname{per}(A).$$

ZEROES OF POLYNOMIALS

Real Stability

A polynomial f in $\mathbb{R}[z_1,\ldots,z_n]$ is said to be stable with respect to a region $\Omega \subseteq \mathbb{C}^n$ if no root of f lies in Ω . Polynomials with no roots in the region

$$\mathcal{H}_{n} = \{(z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} : \Im(z_{i}) > 0, i = 1, 2, \dots, n\}$$

will be called stable.

A polynomial f in $\mathbb{R}[z_1,\ldots,z_n]$ is said to be stable with respect to a region $\Omega\subseteq\mathbb{C}^n$ if no root of f lies in Ω . Polynomials with no roots in the region

$$\mathcal{H}_{n} = \{(z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} : \Im(z_{i}) > 0, i = 1, 2, \dots, n\}$$

will be called stable.

To emphasize the fact that the coefficients of f are all real numbers, we sometimes call such polynomials real stable.

A polynomial f in $\mathbb{R}[z_1,\ldots,z_n]$ is said to be stable with respect to a region $\Omega\subseteq\mathbb{C}^n$ if no root of f lies in Ω . Polynomials with no roots in the region

$$\mathcal{H}_{n} = \{(z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} : \Im(z_{i}) > 0, i = 1, 2, \dots, n\}$$

will be called stable.

To emphasize the fact that the coefficients of f are all real numbers, we sometimes call such polynomials real stable.

When f is a univariate polynomial, real stability amounts to saying that all the roots of f are real, or f is real-rooted.

A Lower Bound for the Derivative At Zero.

In the univariate case, if a real-rooted polynomial has coefficients that are non-negative, then all its roots have to be non-positive. It turns out that

A Lower Bound for the Derivative At Zero.

In the univariate case, if a real-rooted polynomial has coefficients that are non-negative, then all its roots have to be non-positive. It turns out that

$$f'(0)\geqslant \Big(\frac{d-1}{d}\Big)^{d-1}\inf_{t>0}\frac{f(t)}{t},$$

where d is the degree of f.

It is easy to see that if $f(z_1, ..., z_n)$ is a stable polynomial, then $f(a, z_2, ..., z_n)$ is also stable if $\Im(a) > 0$.

It is easy to see that if $f(z_1, ..., z_n)$ is a stable polynomial, then $f(\alpha, z_2, ..., z_n)$ is also stable if $\Im(\alpha) > 0$.

Hurwitz's Theorem

Let Ω be a connected, open set and $\{f_n : n \ge 0\}$ be a sequence of holomorphic functions which converge uniformly on compact subsets of Ω to a holomorphic function f.

If the f_n 's are not zero at any point in Ω , then f is either never zero or identically zero.

It is easy to see that if $f(z_1, ..., z_n)$ is a stable polynomial, then $f(a, z_2, ..., z_n)$ is also stable if $\Im(a) \ge 0$.

Hurwitz's Theorem

Let Ω be a connected, open set and $\{f_n : n \ge 0\}$ be a sequence of holomorphic functions which converge uniformly on compact subsets of Ω to a holomorphic function f.

If the f_n 's are not zero at any point in Ω , then f is either never zero or identically zero.

If $f(z_1,...,z_n)$ is real stable, then for all α in the closure of \mathcal{H}_n , the polynomial $f(\alpha,z_2,...,z_n)$ is also real stable.

It is easy to see that if $f(z_1, ..., z_n)$ is a stable polynomial, then $f(\alpha, z_2, ..., z_n)$ is also stable if $\Im(\alpha) \ge 0$.

Hurwitz's Theorem

Let Ω be a connected, open set and $\{f_n : n \ge 0\}$ be a sequence of holomorphic functions which converge uniformly on compact subsets of Ω to a holomorphic function f.

If the f_n 's are not zero at any point in Ω , then f is either never zero or identically zero.

Differentiation. If f is real stable, then $\partial_1 f$ is also real stable.

ZEROES OF POLYNOMIALS

Permanent: Continued

Recall: $f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n \alpha_{ij}z_j$

Recall: $f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n \alpha_{ij} z_j$

 $(a_{11}z_1 + a_{12}z_2 + \cdots + a_{1n}z_n)$.

 $(a_{21}z_1 + a_{22}z_2 + \cdots + a_{2n}z_n)$.

 $(a_{n1}z_1 + a_{n2}z_2 + \cdots + a_{nn}z_n)$

$$(a_{11}z_1 + a_{12}z_2 + \cdots + a_{1n}z_n)$$

Recall: $f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n \alpha_{ij}z_j$

 $(a_{21}z_1 + a_{22}z_2 + \cdots + a_{2n}z_n)$.

 $(a_{n1}z_1 + a_{n2}z_2 + \cdots + a_{nn}z_n)$

This polynomial is evidently real stable.

Recall:
$$f_A(z_1,...,z_n) = \prod_{i=1}^n \sum_{j=1}^n \alpha_{ij} z_j$$

 $(a_{11}z_1 + a_{12}z_2 + \cdots + a_{1n}z_n)$.

 $(a_{21}z_1 + a_{22}z_2 + \cdots + a_{2n}z_n)$.

 $(a_{n1}z_1 + a_{n2}z_2 + \cdots + a_{nn}z_n)$

This polynomial is evidently real stable.

Moreover, for any
$$0\leqslant \iota\leqslant n$$
, the polynomial $g_i(z_1,\ldots,z_i)=rac{\partial^{n-i}f_A}{\partial z_{i+1}\ldots\partial z_n}(z_1,\ldots,z_i,0,\ldots,0)$

is real stable.

$$g_{i}(z_{1},\ldots,z_{i}) = \frac{\partial^{n-i}f_{A}}{\partial z_{i+1}\ldots\partial z_{n}}(z_{1},\ldots,z_{i},0,\ldots,0)$$

is real stable.

$$g_n(z_1,\ldots,z_i,\ldots,z_n) = \partial^0 f_A(z_1,\ldots,z_i,\ldots,z_n)$$

is real stable.

$$g_n(z_1,\ldots,z_i,\ldots,z_n) = \partial^0 f_A(z_1,\ldots,z_i,\ldots,z_n) = f_A$$

is real stable.

$$g_{i}(z_{1},\ldots,z_{i}) = \frac{\partial^{n-i}f_{A}}{\partial z_{i+1}\ldots\partial z_{n}}(z_{1},\ldots,z_{i},0,\ldots,0)$$

is real stable.

Moreover, for any $0 \leqslant i \leqslant n$, the polynomial

$$g_0() = \frac{\partial^n f_A}{\partial z_1 \dots \partial z_n}(0, \dots, 0)$$

is real stable.

Moreover, for any $0 \leqslant i \leqslant n$, the polynomial

$$g_0() = \frac{\partial^n f_A}{\partial z_1 \dots \partial z_n}(0, \dots, 0) = Per(A)$$

is real stable.

This follows from a repeated application of the closure properties of stability (under restriction and differentiation).

Let
$$b_1, \ldots, b_{i-1}$$
 be fixed positive reals. Notice that: $g_{i-1}(b_1, \ldots, b_{i-1}) = \partial_i g_i(b_1, \ldots, b_{i-1}, 0)$.

Let b_1, \ldots, b_{i-1} be fixed positive reals. Notice that:

$$g_{i-1}(b_1, \ldots, b_{i-1}) = \partial_i g_i(b_1, \ldots, b_{i-1}, 0).$$

Now, since all entries of A are non-negative, then it follows, from the lower bound for f'(0) and closure under restriction of stability, that

$$\partial_i g_i(b_1, \dots, b_{i-1}, 0) \geqslant \left(\frac{d_i - 1}{d_i}\right)^{d_i - 1} \inf_{t > 0} \frac{g_i(b_1, \dots, b_{i-1}, b_i)}{b_i},$$

where d_i is the degree of the polynomial $g_i(b_1, \ldots, b_{i-1}, z_i)$.

 $\arg\inf_{t>0}\frac{g_i(s_1,\ldots,s_{i-1},t)}{t}.$

Set $d = \max_{i=1}^{n} d_i$.

Fixing s_1, \ldots, s_{i-1} , let s_i be defined to be

Applying the inequality for g_i , i = 0, ..., n - 1, we obtain that $per(A) = g_0$,

which is at least

 $\left(\frac{d-1}{d}\right)^{d-1}\frac{g_1(s_1)}{s_1} \geqslant \cdots \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n}\frac{g_n(s_1,\ldots,s_n)}{\prod_{i=1}^n s_i}.$

Applying the inequality for g_i , $i=0,\ldots,n-1$, we obtain that $\operatorname{per}(A)=g_0$, which is at least

$$\left(\frac{d-1}{d}\right)^{d-1}\frac{g_1(s_1)}{s_1} \geqslant \cdots \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n}\frac{g_n(s_1,\ldots,s_n)}{\prod_{i=1}^n s_i}.$$

Applying the inequality for $g_i, i=0,\ldots,n-1$, we obtain that $\operatorname{per}(A)=g_0$, which is at least

$$\left(\frac{d-1}{d}\right)^{d-1}\frac{g_1(s_1)}{s_1} \geqslant \cdots \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n}\frac{f_A(s_1,\ldots,s_n)}{\prod_{i=1}^n s_i}.$$

Applying the inequality for g_i , $i=0,\ldots,n-1$, we obtain that $\operatorname{per}(A)=g_0$, which is at least

$$\left(\frac{d-1}{d}\right)^{d-1}\frac{g_1(s_1)}{s_1}\geqslant \cdots \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n}\frac{f_A(s_1,\ldots,s_n)}{\prod_{i=1}^n s_i}.$$

On the other hand, we have

$$\frac{f_{A}(s_{1},...,s_{n})}{\prod_{i=1}^{n} s_{i}} \ge \inf_{b_{1}>0,...,b_{n}>0} \frac{f_{A}(b_{1},...,b_{n})}{\prod_{i=1}^{n} b_{i}}.$$

AM-GM Inequality

If $\lambda_1,\dots,\lambda_n$ and x_1,\dots,x_n are positive real numbers with $\sum_{i=1}^n\lambda_i=1$,

$$\sum_{i=1}^n \lambda_i x_i \geqslant \prod_{i=1}^n x_i^{\lambda_i}.$$

$$f_A(b_1,\ldots,b_n)$$

$$f_A(b_1,\ldots,b_n) = \prod_{i=1}^n \sum_{j=1}^n \alpha_{ij} \, b_j$$

$$f_{A}(b_{1},...,b_{n}) = \prod_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{j} \overset{AM-GM; \sum_{j=1}^{n} a_{ij} = 1}{\geqslant} \prod_{i=1}^{n} \prod_{j=1}^{n} b_{j}^{a_{ij}}.$$

$$f_{A}(b_{1},...,b_{n}) = \prod_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{j} \overset{AM-GM; \sum_{j=1}^{n} a_{ij} = 1}{\geqslant} \prod_{i=1}^{n} \prod_{j=1}^{n} b_{j}^{a_{ij}}.$$

$$\prod_{i=1}^{n} \prod_{j=1}^{n} b_j^{\alpha_{ij}}$$

$$f_{A}(b_{1},...,b_{n}) = \prod_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{j} \overset{AM-GM; \sum_{j=1}^{n} a_{ij} = 1}{\geqslant} \prod_{i=1}^{n} \prod_{j=1}^{n} b_{j}^{a_{ij}}.$$

$$\prod_{i=1}^{n} \prod_{j=1}^{n} b_j^{\alpha_{ij}} = \prod_{i=1}^{n} \prod_{j=1}^{n} b_j^{\alpha_{ij}}$$

$$f_A(b_1,\ldots,b_n) = \prod_{i=1}^n \sum_{j=1}^n \alpha_{ij} \, b_j \overset{AM-GM;\sum_{j=1}^n \alpha_{ij}=1}{\geqslant} \prod_{i=1}^n \prod_{j=1}^n b_j^{\alpha_{ij}}.$$

$$\prod_{i=1}^{n} \prod_{j=1}^{n} b_{j}^{a_{ij}} = \prod_{i=1}^{n} \prod_{j=1}^{n} b_{j}^{a_{ij}} \overset{\sum_{i=1}^{n} a_{ij} = 1}{\geqslant} \prod_{i=1}^{n} b_{j}.$$

$$f_{A}(b_{1},...,b_{n}) = \prod_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{j} \overset{AM-GM; \sum_{j=1}^{n} a_{ij} = 1}{\geqslant} \prod_{i=1}^{n} \prod_{j=1}^{n} b_{j}^{a_{ij}}.$$

$$\prod_{i=1}^{n} \prod_{j=1}^{n} b_{j}^{\alpha_{ij}} = \prod_{i=1}^{n} \prod_{j=1}^{n} b_{j}^{\alpha_{ij}} \stackrel{\sum_{i=1}^{n} \alpha_{ij} = 1}{\geqslant} \prod_{j=1}^{n} b_{j}.$$

$$\frac{f_{A}(b_{1},\ldots,b_{n})}{\prod_{j=1}^{n}b_{j}}\geqslant 1.$$

$$\operatorname{Per}(A) \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n} \cdot \frac{f_A(s_1, \dots, s_n)}{\prod_{i=1}^n s_i}$$

$$\operatorname{Per}(A) \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n} \cdot \frac{f_A(s_1, \dots, s_n)}{\prod_{i=1}^n s_i}$$

$$\mathsf{Per}(\mathsf{A}) \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n} \cdot \inf_{b_1 > 0, \dots, b_n > 0} \frac{\mathsf{f}_\mathsf{A}(b_1, \dots, b_n)}{\prod_{i=1}^n b_i}$$

$$\operatorname{Per}(A) \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n}$$

$$\operatorname{Per}(A) \geqslant \left(\frac{d-1}{d}\right)^{(d-1)n}$$

Noting that
$$\left(\frac{d-1}{d}\right)^{d-1}\geqslant \frac{1}{e}$$
, we have proved

$$per(A) \ge \left(\frac{1}{e}\right)^n.$$

ZEROES OF POLYNOMIALS

Applications

A matching in a graph is a collection of edges such that

no pair of edges have any common end points.

A matching in a graph is a collection of edges such that no pair of edges have any common end points.

A matching M is perfect if every vertex of the graph is incident to some edge of M.

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\operatorname{perm}(A) = \sum_{\sigma \in S} \left(\prod_{i=1}^{n} a_{i,\sigma(i)} \right).$$

Permanent of A(G) = # of perfect matchings in G.

Note that every perfect matching M in G corresponds to a unique permutation $\sigma_M \in S_n$ such that $\sigma_M(i)$ is equal to k such that v_i is matched to u_i in M.

Conversely, every permutation $\sigma \in S_n$ which is a perfect matching corresponds to a 1-term in perm(A(G)), and all other terms are 0.

$$\operatorname{perm}(A) = \sum_{\sigma \in S} \left(\prod_{i=1}^{n} a_{i,\sigma(i)} \right).$$

Permanent of A(G) = # of perfect matchings in G.

Note that every perfect matching M in G corresponds to a unique permutation $\sigma_M \in S_n$ such that $\sigma_M(i)$ is equal to k such that v_i is matched to u_i in M.

Conversely, every permutation $\sigma \in S_n$ which is a perfect matching corresponds to a 1-term in perm(A(G)), and all other terms are 0.

$$\operatorname{perm}(A) = \sum_{\sigma \in S} \left(\prod_{i=1}^{n} a_{i,\sigma(i)} \right).$$

Permanent of A(G) = # of perfect matchings in G.

Note that every perfect matching M in G corresponds to a unique permutation $\sigma_M \in S_n$ such that $\sigma_M(i)$ is equal to k such that v_i is matched to u_i in M.

Conversely, every permutation $\sigma \in S_n$ which is a perfect matching corresponds to a 1-term in perm(A(G)), and all other terms are 0.

 $\frac{1}{n} \cdot A(G) = \begin{pmatrix} 1/n & 1/n & 1/n & 1/n \\ 1/n & 1/n & 1/n & 1/n \\ 1/n & 1/n & 1/n & 1/n \\ 1/n & 1/n & 1/n & 1/n \end{pmatrix}$

The graph G.

$$\frac{1}{n} \cdot A(G) = \begin{pmatrix} 1/n & 1/n & 1/n & 1/n \\ 1/n & 1/n & 1/n & 1/n \\ 1/n & 1/n & 1/n & 1/n \\ 1/n & 1/n & 1/n & 1/n \end{pmatrix}$$

The matrix (1/n)A(G) is doubly stochastic.

A k -regular graph is a graph where every vertex has exactly k neighbors.	

A k-regular graph is a graph where every vertex has exactly k neigh	hors
A K-regular graph is a graph where every vertex has exactly K heigh	טטוט.

In particular, for a k-regular bipartite graph G, the matrix A(G) has k ones in every row and every column.

A k-regular graph is a graph where every vertex has exactly k neighbors.

In particular, for a k-regular bipartite graph G, the matrix A(G) has k ones in every row and every column.

$$M = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & \cdots & 1 & 1 \\ 1 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 0 \\ 0 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

$$\frac{1}{k} \cdot M = \begin{pmatrix} 1/k & 0 & \cdots & 1/k & 1/k \\ 1/k & 1/k & \cdots & 0 & 1/k \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1/k & 1/k & \cdots & 1/k & 0 \\ 0 & 1/k & \cdots & 1/k & 1/k \end{pmatrix}$$

$$\frac{1}{k} \cdot M = \begin{pmatrix} 1/k & 0 & \cdots & 1/k & 1/k \\ 1/k & 1/k & \cdots & 0 & 1/k \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1/k & 1/k & \cdots & 1/k & 0 \\ 0 & 1/k & \cdots & 1/k & 1/k \end{pmatrix}$$

The matrix (1/k)M is doubly stochastic.

$$\frac{1}{k} \cdot M = \begin{pmatrix} 1/k & 0 & \cdots & 1/k & 1/k \\ 1/k & 1/k & \cdots & 0 & 1/k \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1/k & 1/k & \cdots & 1/k & 0 \\ 0 & 1/k & \cdots & 1/k & 1/k \end{pmatrix}$$

The matrix (1/k)M is doubly stochastic.

$$\operatorname{Per}(M) \geqslant \left(\frac{1}{e}\right)^n \cdot k^n = \left(\frac{k}{e}\right)^n$$

$$\frac{1}{k} \cdot M = \begin{pmatrix} 1/k & 0 & \cdots & 1/k & 1/k \\ 1/k & 1/k & \cdots & 0 & 1/k \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1/k & 1/k & \cdots & 1/k & 0 \\ 0 & 1/k & \cdots & 1/k & 1/k \end{pmatrix}$$

The matrix (1/k)M is doubly stochastic.

$$Per(M) \geqslant \left(\frac{1}{e}\right)^n \cdot k^n = \left(\frac{k}{e}\right)^n$$

Number of matchings in a k-regular bipartite graph $\geqslant \left(\frac{k}{e}\right)^{10}$

Thank You!