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why permanent?

Let us consider the probléme des ménages: At a round table n. couples are to be
seated. The n wives have already occupied the seats 1, 3,...,2n — 1. No
husband is allowed to seat next to his wife. In how many ways, the men can be
seated?

Count the number of permutations o of n symbols such that neither o(i) =1
nor o(i+ i) = i modulo n.



the permanent again!
This is the permanent of the matrix ] — I — I/, where
Jis the all T matrix,
I is the identity matrix and
I’ is the matrix with 1 at (1,1 + 1) positionand (n, 1)
This matrix is of the form

0 0 1 1
100 1
110 1
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Consider: fa (z1,...,zn) = [ [1-; Zj“:] aijz;

(a11z1 + aj2z2 + -+ ainzn)-

(a21z1 +az2z2 + -+ + axnzn)-
(an1z1 +an2zy +---+ annzn)'

Consider the coefficient of z1z; - - - z, in this product.

A(T,..., n)

o' A =per(A).
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A polynomial f in R[z1,...,z,] is said to be stable with respect to a region
Q < C™ifnoroot of f lies in Q. Polynomials with no roots in the region

Hn ={(z1y...,zn) €C":T(z¢) > 0,i=1,2,...,1}

will be called stable.

To emphasize the fact that the coefficients of f are all real numbers, we
sometimes call such polynomials real stable.

When f is a univariate polynomial, real stability amounts to saying that all the
roots of f are real, or f is real-rooted.
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A Lower Bound for the Derivative At Zero.

In the univariate case, if a real-rooted polynomial has coefficients that are
non-negative, then all its roots have to be non-positive. It turns out that

o= (5" 5

where d is the degree of f.
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function f.
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Restriction
It is easy to see that if f(z1, ...,z ) is a stable polynomial, then
fla,zo, ...,z ) isalsostable if J(a) = 0.

Hurwitz's Theorem
Let O be a connected, open set and {f,, : n. = 0} be a sequence of holomorphic
functions which converge uniformly on compact subsets of Q to a holomorphic
function f.
If the f,,’s are not zero at any point in Q,
then f is either never zero or identically zero.

DifFerentiation.
If  is real stable, then ¢4 f is also real stable.
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This polynomial is evidently real stable.
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Moreover, for any 0 < i << n, the polynomial

o fa
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is real stable.

This follows from a repeated application of the closure properties of stability
(under restriction and differentiation).
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Letby,..., b;_1 be fixed positive reals. Notice that:
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Now, since all entries of A are non-negative, then it follows, from the lower
bound for f'(0) and closure under restriction of stability, that
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where d; is the degree of the polynomial g; (b1,...,bi_1,2zi).
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Applying the inequality for g;,1 = 0,...,n — 1, we obtain that per(A) = go,
which is at least

(d—1>d—191(sﬂ - s (d 1) (d=Tnfalst, ... 5n)
d

st T\ d [Ty si
On the other hand, we have
fA(Sh---)Sn) . fA(bh--->bn)
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We can now find a bound for f5 (b1, ..., by ) as follows.

non AM—GM;Y ay=1 noo
fa(br,...,bn) =[] D] aij by > [T17v:"
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Per(A) > (df;])(dinn

d—1
Noting that <%> > 1, we have proved
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A matching in a graph is a collection of edges such that
no pair of edges have any common end points.



A matching in a graph is a collection of edges such that
no pair of edges have any common end points.

A matching M is perfect if every vertex of the graph
is incident to some edge of M.
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Permanent of A (G) = # of perfect matchings in G.

Note that every perfect matching M in G corresponds to a unique permutation
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Permanent of A (G) = # of perfect matchings in G.

Note that every perfect matching M in G corresponds to a unique permutation
oM € Sy such that ong (1) is equal to k such that vy is matched to w; in M.

Conversely, every permutation o € S;, which is a perfect matching corresponds
toa T-termin perm(A(G)), and all other terms are 0.



perm(A) = ' (H Ommi) :

oeS, \i=1
Permanent of A(G) = # of perfect matchings in G.

Note that every perfect matching M in G corresponds to a unique permutation
oM € Sy such that o (1) is equal to k such that vy is matched to u; in M.

Conversely, every permutation o € S, which is a perfect matching corresponds
toa 1-term in perm(A(G)), and all other terms are 0.
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The graph G.
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The matrix (1/n)A(G) is doubly stochastic.
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The matrix (1/k)M is doubly stochastic.
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The matrix (1/k)M is doubly stochastic.
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1k 0 - 1/k 1/k

1/k 1/k -~ 0 1/k
M=
1/ 1/k --- 1/k 0
0o 1/k .- 1/k 1/k

The matrix (1/k)M is doubly stochastic.

Per(M) > <1>n -kt = <k>n
e e

Number of matchings in a k-regular bipartite graph > (:)
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